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Executive Summary 
This report presents the decision tree algorithm for energy-related decisions. The decision-making levels considered in 
the design of the decision-tree algorithm are those defined in the scope of the ECHOES project, namely, Formal social 
units acting as policy makers and/or energy providers, Collective decision-making units that are more formally structured 
social units including TSOs, PXs, energy producers and consumer associations, and Individual consumers engaging in 
joint contracts to increase their power of negotiation, such as larger group of households, condominium management 
and associations of households. The project’s three technological foci are those analysed in the ECHOES project: 
Smart energy technologies, Electric mobility, and Buildings.  

The developed decision tree algorithm is designed to support decision-makers at various decision-making levels to plan 
for their processes, as well as for formulating guidelines or policies for different decision-making levels. To this end, 
three separate decision-tree algorithms were constructed, one pertaining to each decision-making level. Each decision 
tree algorithm was designed to evaluate the potential for success or utility of an energy-related process from the 
perspective of a particular decision-making level. The process under consideration may be a project, case, 
implementation, planned investment, or a similar undertaking. The decision tree algorithm combines the knowledge 
generated previously in WP6 with input from the decision-makers in an analytical assessment of the potential for a 
given undertaking. In doing so, the decision tree algorithm explicitly considers process triggers and phases, as well as 
key drivers, enablers, and disablers. The decision-makers are actively involved in the execution of the algorithm by 
estimating the relevance, magnitude of effect, and likelihood of occurrence of the key drivers, enablers, and disablers. 
Besides the evaluation of the relevant energy-related processes, the algorithm can also provide answers to “what if?” 
questions in order to reveal the effects of possible changes in the relevance, magnitude of effect, and likelihood of 
occurrence of the key drivers, enablers, and disablers. Such information shows the overall impact of changes in 
contextual factors. Hence, as well as designing the processes, it also can be utilized for policy making and identifying 
and planning for the critical contextual factors.    

The structure of the decision trees for each decision-making level has the starting root node as the trigger affecting the 

energy-related process. The decision tree algorithm for each decision-making level is differentiated with respect to 

these triggers, which are derived from Deliverable D6.3. The two triggers for the formal social units are problem-driven 

processes and goal-driven processes. The three associated triggers for the collective decision-making units are: 

market-driven processes, sustainability-driven processes, and legislation / market-driven processes. Finally, the triggers 

for the individual consumers engaging in joint contracts are individual-driven process and joint benefit-driven process. 

Following the triggers as root nodes, the building blocks of the decision tree algorithm are derived from work performed 

in WP6 of the ECHOES project. The foundation of the tree is composed of the three phases of energy-related processes 

derived from the best examples/successful implementations analysed in Deliverable D6.3 for formal social units, 

collective decision-making units, and individuals engaging in joint contracts. The five phases are problem identification, 

alternative selection, planning, implementation, and monitoring.  

The terminal root of the decision tree refers to the assessment of the potential for success or utility of the process. The 

calculation of potential for success is based on the data collected and decision makers’ perspectives on motivators, 

barriers, and other critical contextual factors. The assessment is first made for each node of the decision tree, then for 

the overall process. 

The information regarding the key drivers, enablers, and disablers are reflected in the structure of the decision tree by 
superimposing nodes for each process phase representing the key drivers, enablers, and disablers that are adjacent 
to the node defining the process phase.   

The key drivers for the processes are identified using the results of Deliverable D6.3, and the enablers and disablers 
corresponding to the different decision-making levels are identified using the results of the deliverables D6.1 and D6.2.  
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The three inputs required for each such element from the decision-makers are the weight, impact, and probability 
values. Within the context of the decision tree, weight corresponds to the relevance or importance of the particular key 
driver, enabler, or disabler, for the particular phase. The impact value refers to the magnitude of the effect of the key 
driver, enabler, or disabler once realized or achieved. Finally, the probability value refers to the likelihood of occurrence 
or realization of the particular element for the particular phase. For the importance values, the designed decision tree 
algorithm uses a Likert scale of 0 to 5, where 0 corresponds to none, 1 corresponds to not important, 2 corresponds to 
slightly important, 3 corresponds to moderately important, 4 corresponds to important, and 5 corresponds to very 
important. For the impact values, a similar Likert 0 to 5 scale is used. Here, 0 corresponds to none, 1 corresponds to 
very low, 2 corresponds to low, 3 corresponds to moderate, 4 corresponds to considerable, and 5 corresponds to 
severe. Regarding the probability values, the natural range of 0 to 1 is used. The decision maker can select probability 
values between 0 and 1  

The decision maker is able to select the values from a drop-down menu in the interface of the spreadsheet for the 
decision tree. The values for the elements are associated with the linguistic counterparts, in order to facilitate the 
decision maker’s choice, since linguistic terms are generally easier for the decision makers to evaluate. This part of the 
decision tree algorithm also helps the decision makers to translate their perceptions on the key drivers, enablers, and 
disablers into comparable numeric values. The excel sheet will be available upon request explaining the potential use 
to the authors.  
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1. Introduction  
This report is a deliverable of WP6 of ECHOES project, with the objective of synthesizing the results of the earlier tasks 
and deliverables (D6.1, D6.2, and D6.3) into a decision tree algorithm, for use as a decision support tool for various 
decision-making units.   

The decision-making units under consideration pertains to the Macro level of the ECHOES project, and are aligned with 
the three levels of decision-making units identified in the ECHOES perspective:  

a) Formal social units which act as policy makers and/or energy providers, with a wider influence on energy 
choice decisions.  

b) Collective decision-making units, which are more formally structured and with relatively lower information and 
power asymmetries.  

c) Individual consumers engaging in joint contracts to increase their power of negotiation with the above bodies..  
The report also follows the framework set by the ECHOES project in selecting the technological foci involved in the 
analysis for deriving the decision tree algorithm. The three technological foci are as follows: 

a) Smart energy technologies are at the core of what the integrated roadmap for realizing the SET-plan describes 
as an energy revolution. These includes distributed, small-scale renewable energy production technologies, 
but also a range of technologies for the traditional “demand side” and energy storage.  

b) Electric mobility as one of the core technologies to be implemented and developed further to increase road 
transport efficiency.  

c) Buildings – including construction activities, insulation, energy efficiency upgrading, heating, cooling, 
illuminating, and energy use behaviour. 

 

The construction of the decision tree algorithm is based on the data and analysis obtained from the earlier tasks of WP6 
of the ECHOES project, which included Tasks 6.1,  6.2,  6.3, and  6.4, and the resulting deliverables D6.1 (2018), D6.2 
(2018), and D6.3 (2019).  

The decision tree algorithm is based on a joint analysis of the preceding deliverables D6.1, D6.2, and D6.3, with a 
general focus on the phases of implementations regarding the processes that pertain to energy transitions. This 
approach utilizes in particular the information from D6.1 and D6.2 regarding the enablers and disablers of the associated 
processes, and the information from D6.3 regarding the best practices/successful implementations. 

Tasks 6.1, 6.2, and 6.3 resulted in the identification of the key factors, variables, and parameters pertaining to the 
energy choices and energy-related behaviour through the utilization of qualitative research techniques. The 
methodology included (1) 15 Focus groups and 67 In-depth interviews carried out in six selected countries – Austria, 
Bulgaria, Finland, Norway, Spain and Turkey, and (2) a-state-of-the-art and comprehensive literature review carried out 
in the previous tasks. The resulting deliverables, D6.1 and D6.2, revealed the components of the processes related 
with energy transition, in which the motivators and barriers provided a partial understanding of the conditions under 
which these processes were able to succeed. This information is utilized by the decision tree algorithm developed within 
the framework of this report. The algorithm therefore was able to develop a contextual analysis that evaluates the 
available information, based on the relevant decision-making levels and technological foci.  

As well as the process components, key factors, motivators, and barriers, the decision tree algorithm utilizes the 
information from Task 6.4 and deliverable D6.3, based on the case studies regarding best practices/successful 
implementations in selected countries. The inquiry in D6.3 of WP6, was implemented in 7 countries, namely, Austria, 
Bulgaria, Finland, Germany, Italy, Norway, Spain, and Turkey. Twelve cases were selected as showcases for energy 
choices and energy-related behaviour. The resulting information from these 12 selected case studies was analysed to   
determine emerging themes, internal and external factors that derive the success of the associated implementations. 
Utilization of the results from Task 6.4 and deliverable D6.3 regarding the case studies enabling the decision tree 
algorithm to develop a more functional perspective of the energy-related processes and implementations, based on 
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field data. The themes potentially leading to an analytical investigation of the best practices and/or successful 
implementations from D6.1 and D6.2 were adopted in D6.3. The foremost examples of such themes are related with 
the internal mechanisms. These are top-down and bottom-up mechanisms, formal structures and governance 
frameworks that may agree or conflict with the presumed process components as defined earlier in D6.1 and D6.2. 
Thus, the case studies in D6.3 resulted in process mappings including the positive and negative interrelations of the 
process components. These mechanisms and other relevant constructs that drive the best practices/successful 
implementations were analysed and the results were translated into the inputs of the decision tree algorithm, including 
process triggers, process mappings, and rules.  

Hence, a decision tree algorithm was developed in two stages: first, taking the process components, key factors, 
variables, and parameters pertaining to the energy choices and energy-related behaviour as the infrastructure, and 
second, positioning the motivators and barriers on top of this infrastructure in order to assess their effects using the 
information from the case studies.   
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2. Background 
Decision Tree algorithms are within the category of “learning algorithms”. A learning algorithm is one in which available 
information is processed to generate patterns regarding a system, and in which these patterns are applied to make 
assessments and decisions for new situations (Lin and Rosasco, 2018; Faraj et al., 2018; Cha et al., 2018). That is, a 
learning algorithm ‘learns’ from examples to generate rules that can be implemented for similar future situations. Typical 
areas of implementation of learning algorithms are artificial intelligence and machine learning, where the artificial neural 
network parameters are fine-tuned so that the model behaviour resembles the expected real system behaviour. Hence, 
learning algorithms aim to identify the outputs of the system based on different set of inputs. The success of the learning 
algorithm depends on two key metrics: i) variety of the inputs involved in developing the algorithm, and the extent to 
which these inputs represent all possible realizations of the system scope, and ii) the extent to which the algorithm 
outputs  matches the behaviour of the real system, considering the impact of all possible stakeholders.  

To this end, the decision tree algorithm developed in this deliverable utilizes the results of the deliverables D6.1 and 
D6.2, as these provide a comprehensive coverage of the processes, key factors, parameter, and variables regarding 
the energy-related behaviour. The decision tree algorithm is also based on the 12 case studies conducted in the scope 
of deliverable D6.3, thus incorporating perspectives from real-life implementations into the algorithm design. That is, 
the developed decision tree algorithm acknowledges and accounts for the two metrics essential for the success of 
learning algorithms.     

One further level of classification places decision tree algorithms within “supervised learning algorithms”. Decision tree 
algorithms have the advantage over algorithms in this same category, in that they can also be used in situations where 
the aim is to produce regressions or establish classifications. Such algorithms use observations, as well as their 
outcomes, to make predictions about the system. A supervised learning algorithm constructs a model in order to arrive 
at conclusions under conditions of uncertainty. These predictions utilize evidence from the observations. The predictive 
capability of the supervised learning algorithm increases with the number of observations (Dietterich, 1998; Caruana 
and Niculescu-Mizil, 2006; Jordan and Mitchell, 2015; Kim, 2016) 

The decision tree algorithm developed in the context of this deliverable relies on the earlier results of WP6 of ECHOES, 
where 15 focus group studies, 67 in-depth interviews and 12 case studies were implemented across 7 selected 
countries. Thus, the substantial sample base of observations utilized in the construction of the resulting algorithm 
considerably contributes to its predictive capability.     

As discussed, the general aim of decision tree algorithms is to construct a model that will be trained by real data 
involving inputs and outputs to estimate the category or values of output variables. The decision tree algorithm 
accomplishes this aim by using the prior data as training data to generate decision rules (Song and Lu, 2015; Jadhav 
and Channe, 2014; Dai et al., 2016). 

Decision tree algorithms use the tree representation to analyse the system under consideration and predict the 
outcomes. In general, the root nodes of the tree correspond to the general modes or categories of the system under 
consideration. The inner nodes of the tree correspond to attributes, that is, to the characteristics of the system under 
consideration. Finally, for classification problems, the leaf (terminal) nodes correspond to the classes of the system. 
For cases where the decision tree algorithm is devised to make predictions about the system outcomes, leaf nodes 
correspond to possible outcomes of the system (Segatori et al., 2018; Zhao and Li, 2017). The algorithm developed for 
this deliverable focuses on identifying the potential outcomes of energy transition processes, primarily, the degree of 
success. Figure 1 below depicts a generic representation of a decision tree.     
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Figure 1 Sketch of a Decision Tree Algorithm 

Decision trees classify information from earlier observations in order to solve regression and classification problems. 
The tree develops incrementally by matching of the subsets of the data with the classes, and the ordering of these 
classes. Finally, when the tree reaches leaf nodes, a decision, outcome, or classification is reached. The advantages 
of this system include ease of use, ease of explanation, a visual aspect allowing interpretation of complex processes, 
and the imitation of human behaviour, whereas the disadvantages are increased complexity of calculations with the 
number of classes, overdependence on the data characteristics, risk of bias, and risk of low accuracy (Bach and Dayan, 
2017; Wu et al., 2017).  

The decision tree algorithm starts from the root node and proceeds towards the leaf nodes to reach an outcome. The 
branches of the tree are traversed by incorporating the values associated with the internal nodes. That is, the attribute 
values of the internal nodes are processed to the point at which a leaf node is reached.  

There are several general assumptions in constructing decision trees. To begin with, the whole system, or the 
categories of the system, is taken as the root. Accordingly, all data in the training set are taken as the root for the 
decision tree algorithm. For ease of processing, the values assigned to attributes are generally taken as the elements 
of a set of possible realizations that represent a category rather than continuous variables, although continuous values 
convey more information. In the case of category values being inherently continuous, these are discretized and input 
to the model (Garget al., 2016; Jaworski, 2018).  

In the decision tree algorithm constructed for the purposes of this deliverable, continuous values for the attributes 
regarding the weights, impacts and probabilities are discretized for ease of processing, using 5 x 5 x 10 possible values 
to preserve as much data as possible. 

The decision tree is constructed by assuming an ordering of the attributes, that is, an ordering of the nodes of the tree. 
If it is not implied by logical constraints, this ordering is carried out using either an algorithm or statistical analysis. 
Ordering of the attributes affects the efficiency of the decision tree algorithm, determining its speed and convergence, 
as well as the accuracy of assessments made using the decision tree algorithm. At this point, two common methods 
are the Information Gain and the Gini Index methods (Mathan et al., 2018; Agnihotri et al., 2017). The former is used 
when category values are discrete, and the latter, when continuous. Both methods consider the attributes as yet 
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unplaced as nodes of the tree, and aim to identify how much of the output can be characterized if a particular such 
attribute is used as the next node. The attribute that provides the highest level of characterization is selected as the 
next node. In the case that the attributes inherit a natural ordering, such as the phases of a process or the steps of an 
operation, the ordering is implied by that of the phases or the steps.  

The decision tree algorithm developed in this deliverable is cast into the process of implementations regarding energy 
transition on different decision making levels; therefore, ordering of the attributes are in line with the mapping of these 
processes. Accordingly, this approach increases the speed of the algorithm, guarantees convergence in a 
predetermined number of steps, and assures a more accurate estimation of the outcomes.    

The generic decision tree algorithm starts from the root node and implements a top-down methodology to construct the 
tree. At each step, of all possible branches, the one with the maximum information gain or the minimum gini index is 
selected (Quinlan, 1986). This algorithm is in the class of greedy algorithms, selecting  the alternative with the maximum 
gain at each step.    

Below is a pseudocode representation of the generic decision tree algorithm:   

Set all data to the root node. Set root node = current node 

Branching 

If there are no unprocessed nonleaf nodes, Stop! 

Else for each child of the current node 

For each attribute that is node assigned as a branch of the tree 

Calculate the information gain (or gini index) if the attribute is selected as the next node 

Identify the attribute with the highest information gain (or the attribute with the lowest gini index) 

If the information highest information gain is 0 (or if the lowest gini index is 1) mark the node 
as leaf node  

Else Branch using that attribute as the next node of the tree 

Set current node = any unprocessed node with all ancestors processed and GoTo Branching 
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3. Decision Tree Algorithm 
The foundation of the decision tree algorithm as a decision support tool is based on the below process mapping, 

developed in the context of D6.3 for energy-related implementations. Process mapping is augmented to include the 

terminal node that collects the total utility score.  

The development of process mapping for the best practices/successful implementations in D6.3 included the phases 

of Problem Identification, Alternative Selection, Planning, Implementation, and Monitoring.   

 

Figure 2 Augmented Process Mapping 

 

The decision tree extends process mapping by including the process triggers. Since the triggers are not uniform over 
the decision-making units, three versions of the decision tree are constructed, corresponding to formal social units, 
collective decision making units, and individuals engaging in joint contracts. These triggers are added as root nodes to 
the corresponding decision trees. The below example, regarding formal social units, demonstrates the root nodes of 
“Problem-driven Process” and “Goal-driven Process”, which represent the process triggers. These root nodes are linked 
to the node representing the first phase of the process, that is, ‘Problem identification’.  

 

Figure 3 Triggers for the Process 

 

Each node corresponding to a phase of the best practices/successful implementations reflects the effects of key drivers 

of the process pertaining to that specific phase. This is achieved by adding a node adjacent to the node that defines 

the process phase. Below is an example of the inclusion of the effect of mid-level management contribution for the 

planning phase.  

 

Figure 4 Key Driver and Process Phase 
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Deliverable D6.2 identifies the motivators (enablers) and barriers (disablers) as significant components of the process 
for the energy-related implementations. Hence, the construction of the decision tree is completed with the addition of 
nodes corresponding to the motivators and barriers for each phase of the process. This is demonstrated below for the 
‘Implementation’ phase: 

  

 

Figure 5 Inclusion of Motivators and Barriers for the process phases 

 

The decision tree algorithm is designed as a decision-support system, and the resulting decision tree is executed by 
input from the decision maker(s) in order to output a total utility score for the process under consideration.  

For each phase under consideration, a utility score is calculated as a joint result of the effects of key drivers, enablers, 
and disablers, where the disablers are considered to have negative utilities or disutilities. The utility score of a phase is 
the simple arithmetic sum of the utility scores of three components. That is: 

 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑎 𝑃ℎ𝑎𝑠𝑒 =  ∑ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑏𝑦 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑖)𝑖 𝜖 {𝑘𝑒𝑦 𝑑𝑟𝑖𝑣𝑒𝑟𝑠,𝑒𝑛𝑎𝑏𝑙𝑒𝑟𝑠,𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑟𝑠}   

 

As an example, the planning phase with the utility score of 20 for drivers, 15 for enablers, and -12 for disablers would 

have a total utility score of 20+15-12 = 23. 

The utility by each component is computed as follows:  

For the key drivers: 

 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑏𝑦 𝑘𝑒𝑦 𝑑𝑟𝑖𝑣𝑒𝑟𝑠 =  ∑  
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑏𝑦 𝑘𝑒𝑦 𝑑𝑟𝑖𝑣𝑒𝑟(𝑘)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦 𝑑𝑟𝑖𝑣𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒
𝑘 ∈ {𝑠𝑒𝑡 𝑜𝑓 𝑘𝑒𝑦 𝑑𝑟𝑖𝑣𝑒𝑟𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒}

 

 

Considering a set of 2 key drivers with utility values of 16 and 8, the utility by key drivers would be calculated by: 

(16+8)/2 = 12. 

For the enablers: 
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𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑏𝑦 𝑒𝑛𝑎𝑏𝑙𝑒𝑟𝑠 =  ∑  
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑏𝑦 𝑒𝑛𝑎𝑏𝑙𝑒𝑟(𝑒)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑎𝑏𝑙𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒
𝑒 ∈ {𝑠𝑒𝑡 𝑜𝑓 𝑒𝑛𝑎𝑏𝑙𝑒𝑟𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒}

 

 

For a hypothetical case, considering a process phase with 4 enablers having utility values of 18, 15, 21, and 20, 
respectively, the utility by enablers would be equal to: (18+15+21+20)/4 = 18.5. 

Finally, for the disablers: 

 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑏𝑦 𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑟𝑠 =  ∑  (−1) ∗  
𝐷𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑏𝑦 𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑟(𝑑)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑟𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒
𝑑 ∈ {𝑠𝑒𝑡 𝑜𝑓 𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑟𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒}

 

 

For a phase with 3 disablers, having disutility values of 21, 10, and 8, respectively, the utility by disablers would be 

calculated as: ((-21)+(-10)+(-8))/3 = -13. 

Calculation of the utility value for each element in the set of key drivers, enablers, or disablers requires inputs from the 

decision maker(s), which is necessary to obtain their contextual information. On the other hand, this phase of the 

decision tree algorithm directs the decision makers towards a more extensive consideration of the key drivers, enablers, 

and disablers, as well as developing a more analytical approach towards improving their impacts.  

The input required for each such element from the decision makers are the weight, impact, and probability values. The 

decision makers will provide the required input based on their expertise, involvement in the particular case as well as 

based on the relevant data available (e.g. as the output of earlier research) on weight, impact, or probability of a  key 

driver, enabler, or disabler. Within the context of the decision tree, weight corresponds to the relevance or importance 

of the particular key driver, enabler, or disabler, for the particular phase. The impact value refers to the magnitude of 

the effect of the key driver, enabler, or disabler, once it is realized or achieved. Finally, the probability value refers to 

the likelihood of occurrence or realization of the particular element for the particular phase.  

For the importance values, the designed decision tree algorithm uses a Likert scale of 0 to 5, where 0 corresponds to 

none, 1 corresponds to not important, 2 corresponds to slightly important, 3 corresponds to moderately important, 4 

corresponds to important, and 5 corresponds to very important.     

For the impact values, a similar Likert 0 to 5 scale is used. Here, 0 corresponds to none, 1 corresponds to very low, 2 

corresponds to low, 3 corresponds to moderate, 4 corresponds to considerable, and 5 corresponds to severe.  

The decision maker is able to select the values from a drop-down menu in the interface of the spreadsheet for the 

decision tree. The values for the elements are associated with the linguistic counterparts, in order to facilitate the choice 

of the decision maker, because  the linguistic choices are generally easier. This part of the decision tree algorithm also 

helps the decision makers to translate their perceptions on the key drivers, enablers, and disablers into comparable 

numeric values. 

Regarding the probability values, the natural range of 0 to1 is used. The decision maker can select probability values 

between 0 and 1, with increments of 0.1, totalling to 11 choices. The increment values can be increased or decreased 

as desired; however, a smaller number of choices would hinder decision makers in reflecting precise perceptions on 

the probability values, while a greater number would lengthen and unnecessarily complicate the selection process. 

The interface for the decision makers to select the weight, impact, and probability values is demonstrated below: 
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Figure 6 Interface for selecting the weight, impact, and probability values 

Once the weight, impact, and probability values are selected, the utility value for each element (disutility for disablers) 

is calculated by multiplying the corresponding selected values.  

That is, for key drivers:  

 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑘𝑒𝑦 𝑑𝑟𝑖𝑣𝑒𝑟 (𝑘) =  𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘) ∗ 𝐼𝑚𝑝𝑎𝑐𝑡 (𝑘) ∗ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑘) 

  

For a key driver with weight selected by the decision maker as 4-important, impact selected as 3-moderate, and 

probability selected as 0.7, the utility value would be: (4*3*0.7)=8.4  

For enablers:  

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑛𝑎𝑏𝑙𝑒𝑟 (𝑒) =  𝑊𝑒𝑖𝑔ℎ𝑡 (𝑒) ∗ 𝐼𝑚𝑝𝑎𝑐𝑡 (𝑒) ∗ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑒) 

 

For an enabler with weight selected by the decision maker as 3-moderately important, impact selected as 2-low, and 

probability selected as 0.8, the utility value would be: (3*2*0.8)=4.8  

For disablers: 

 

𝐷𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑟 (𝑑) =  𝑊𝑒𝑖𝑔ℎ𝑡 (𝑑) ∗ 𝐼𝑚𝑝𝑎𝑐𝑡 (𝑑) ∗ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑑) 

 

For a disabler with weight selected by the decision maker as 5-very important, impact selected as 1- very low, and 

probability selected as 0.9, the utility value would be: (5*1*0.9)=4.5. 

Once the utility score of each process phase is computed, the overall utility score of the process is calculated by the 

average (or the minimum) of the phase utility scores. 

That is: 

  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 =  
∑ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒(𝑝)𝑝 𝜖 {𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑝ℎ𝑎𝑠𝑒𝑠}

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
 

  

Enabler Weight Impact Probability Weight Impact Probability

Globalization 3 - moderately important 4 - considerable 0,4 3 - moderately important 4 - considerable 0,3

Energy efficiency 2 - slightly important 2 - low 0,4 4 - important 1 - very low 0,5

Energy savings 3 - moderately important 3 - moderate 0,3 3 - moderately important 3 - moderate 0,4

Incentives 1 - not important 3 - moderate 0,5 2 - slightly important 2 - low 0,3

Tax benefits 4 - important 4 - considerable 0,4 2 - slightly important 3 - moderate 0,5

Climate concerns 3 - moderately important 1 - very low 0,3 3 - moderately important 3 - moderate 0,4

Environmental concerns 2 - slightly important 3 - moderate 0,5 5 - very  important 1 - very low 0,3

Cost savings 2 - slightly important 2 - low 0,1 4 - important 3 - moderate 0,5

Good examples 3 - moderately important 3 - moderate 0,4 4 - important 1 - very low 0,4

Energy self-sufficiency 5 - very  important 3 - moderate 0,3 4 - important 3 - moderate 0,3

Problem Identification Alternative Selection
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or  

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑀𝑖𝑛𝑝 𝜖 {𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑝ℎ𝑎𝑠𝑒𝑠} {𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒(𝑝)}   

 

For a process with utility score of the problem identification phase equal to 20, utility score of the alternative selection 

phase equal to 22, utility score of the planning phase equal to 17, utility score of the implementation phase equal to 19, 

and utility score of the monitoring phase equal to 15, the overall utility score is calculated with respect to the average 

method as: (20+22+17+19+16)/5 = 18.8, and with respect to the minimum method as min (20,22,17,19,16) = 16. For a 

more convenient perception, these scores, which have a maximum value of 25, can be converted to the percentage 

scale via multiplying each value by 100/25 = 4. In a such case, the percentage utility values calculated by the average 

method and minimum method will be 18.8*4 = 75.2% and 16*4 = 64%, respectively. 

Use of the minimum utility score is justified in cases where the prevalent viewpoint is that the phases are related in a 

tandem manner; hence, the overall process is as successful as its least successful phase. The decision tree algorithm 

is flexibly designed so that other formulations of the overall utility score can be implemented, for example, by taking 

one of the following: the maximum of the phase utility scores, the product of the phase utility scores, or the weighted 

sum of the phase utility scores. 

Next, the details of the decision tree algorithms for the three decision making levels are demonstrated. 

3.1 Decision Tree Algorithm for Formal Social Units  
 

There are four points of difference between the structure of the decision tree algorithm for formal social units differ and 

those of the other decision-making levels: the triggers, key drivers, enablers, and barriers pertaining to formal social 

units. The triggers and key drivers are derived from D6.3 and the enablers and disablers are derived from D6.2.  

The triggers for the formal social units are problem-driven process and goal-driven process. 

The key drivers for the formal social units used in the design of the decision tree algorithm are identified as iteration of 

top-down and bottom-up mechanisms, as well as mid-level management contribution.   

The enablers for formal social units are listed in the table below: 

Enabler 

Globalization Good examples 

Energy efficiency Energy self-sufficiency 

Energy savings Prosumerism 

Incentives Local production 

Tax benefits Awareness 

Climate concerns Information 

Environmental concerns Communication 

Cost savings  

Table 1 Enablers for Formal Social Units 

 The disablers for formal social units are listed in the table below: 
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Table 2 Disablers for Formal Social Units 

 

 

 

 

 

Circumstances

legal

financial

environmental

economic

Mismanagement

Operational mistakes

Lack of awareness

Administrative

organizational

capacity

procedural

conflicts

trust and transparency

Percevied value of energy

Social and individual

habits

resistance to change

status quo (inertia)

cultural norms

Uncertainty and risk

technological

regulatory

political

legislational

Disabler
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The resulting decision tree structure for formal social units is given below: 

 

 

 

Figure 7 Decision Tree Structure for Formal Social Units 
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3.2 Decision Tree Algorithm for Collective Decision-Making Units  
 

As with the formal social units, the structure of the decision tree for the collective decision-making units is differentiated 

by the specification of the triggers, key drivers, enablers, and disablers. 

The three types of triggers for the collective decision-making units are: Market-driven process, sustainability-driven 

process, and legislation and market-driven process.  

The key drivers for the collective decision-making units are identified as similar to those of formal social units. These 

are: iteration of top-down and bottom-up mechanisms and mid-level management contribution. 

The enablers for collective decision-making units are as listed below: 

Enabler 

Globalization Good examples 

Energy efficiency Energy self-sufficiency 

Energy savings Prosumerism 

Incentives Local production 

Tax benefits Awareness 

Climate concerns Information 

Environmental concerns Communication 

Cost savings  

Table 3 Enablers for Collective Decision-Making Units 

The disablers for collective decision-making units are as listed below: 

 

Table 4 Disablers for Collective Decision-Making Units 

Circumstances

legal

financial

environmental

economic

Mismanagement

Operational mistakes

Lack of awareness

Administrative

organizational

capacity

procedural

conflicts

trust and transparency

Percevied value of energy

Social and individual

habits

resistance to change

status quo (inertia)

cultural norms

Uncertainty and risk

technological

regulatory

political

legislational

Disabler
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The resulting decision tree structure for collective decision-making units is given below: 

 

 

 

Figure 8 Decision Tree Structure for Collective Decision-Making Units 
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3.3 Decision Tree Algorithm for Individuals Engaging in Joint Contracts 
The processes pertaining to individuals engaging in joint contracts are triggered by an individual-driven process and a 

joint benefit-driven process. 

The key drivers for individuals engaging in joint contracts differ from those of the formal decision-making units and 

collective decision-making units: there is one enabling key driver, namely, lean organizational structure, and two 

disabling key drivers: power asymmetries and conflict of interest; and prolonged process. 

The enablers for individuals engaging in joint contracts are as listed below: 

Enabler 

Globalization Good examples 

Energy efficiency Energy self-sufficiency 

Energy savings Prosumerism 

Incentives Local production 

Tax benefits Awareness 

Climate concerns Information 

Environmental concerns Communication 

Cost savings  

Table 5 Enablers for Individuals Engaging in Joint Contracts 

The disablers for individuals engaging in joint contracts are as listed below: 

 

 

Table 6 Disablers for Individuals Engaging in Joint Contracts 

Circumstances

legal

financial

environmental

economic

Mismanagement

Operational mistakes

Lack of awareness

Administrative

organizational

capacity

procedural

conflicts

trust and transparency

Percevied value of energy

Social and individual

habits

resistance to change

status quo (inertia)

cultural norms

Uncertainty and risk

technological

regulatory

political

legislational

Disabler



                                                                                                                                         

PROJECT NO. 
Project No. 727470 

REPORT NO. 
ECHOES-6.5 
D6.5 Algorithm 
 

VERSION 
03 

 
 

      
 22 of 26 

  

The resulting decision tree structure for individuals engaging in joint contracts is given below: 

 

 

 

Figure 9 Decision Tree Structure for Individuals Engaging in Joint Contracts 
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4. Conclusion 
 

The decision tree algorithm is constructed through integrating the results from work performed in WP6 of the ECHOES 

project. The resulting decision tree algorithm is designed to support planning for decision makers’ processes in various 

decision-making units, as well as for formulating guidelines or policies for different decision-making levels. 

One key advantage is its characteristic as “learning algorithm”, its ability to utilize existing information and generate 

patterns pertaining to a system. Such patterns are then utilized to draw assessments and for decision-making in new 

situations. The existing data for the “learning” part of the decision tree algorithm derives from the analysis of 15 focus 

group studies, 67 in-depth interviews and 12 case studies in 7 selected countries  within the scope of WP6 of ECHOES, 

providing a reliable foundation for the constructed decision tree algorithm, and increasing its predictive capability.   

The structure of the constructed decision tree follows the mapping of the phases of energy-related processes. These 

phases are identified considering the best examples/successful implementations within the scope of Deliverable D6.3. 

This overall structure is common to all three decision making units, namely, formal social units, collective decision-

making units, and individuals engaging in joint contracts. The consecutive phases of these processes are problem 

identification, alternative selection, planning, implementation, and monitoring, which form the decision tree nodes.   

Additional nodes of the decision tree come from two sources: first, the enablers and disablers affecting the processes, 

derived from the enablers and disablers identified in Deliverables D6.1 and D6.2, and second, the information from best 

practices/successful implementations, as identified in Deliverable D6.3. These nodes pertain to the specific ingredients 

of the processes for the particular decision making unit. For formal social units and collective decision making units, 

these are “Iteration of top-down and bottom-up mechanisms” and “Mid-level management contribution”, both of which 

are evaluated as enablers. For individuals engaging in joint contracts, the inputs from best practices/successful 

implementations are: “Lean organizational structure”, considered to act as an enabler, and “Power asymmetries and 

conflict of interest”, and “Prolonged process”, considered as disablers.  

The motivators and barriers at each node are explicitly evaluated by the decision maker, through a spreadsheet format, 

in order to assess the total utility score under a specific context. This analytical power of the decision tree algorithm 

makes it a valuable decision support tool for different levels of decision-makers, or from the perspectives of different 

decision making units.    

For each process phase, the utility score is calculated as the algebraic sum of (dis)utilities implied by enablers, disablers, 

and additional factors. The total utility score for a particular situation is then calculated by taking the average or minimum 

of the utility scores at each process phase.  

Decision makers can make use of the decision tree algorithm by first selecting the appropriate decision-making level, 

then the type of process defined by the trigger. Each assessment made by the decision maker for the motivators, 

barriers, and additional factors results in a total utility score. The decision maker can construct scenarios by assigning 

different values for weights, impacts, and probabilities of motivators, barriers, and additional factors. Scenarios can 

reflect different projections, base, optimistic, or pessimistic perspectives, or estimated effects of planned projects (e.g. 

implementation of an incentive scheme to decrease the impact of the ‘cost’ barrier). Comparison of the scores of 

different scenarios helps the decision maker in choosing the schemes to implement, planning for risk management, 

prioritizing projects, or even deciding on whether or not to go on with a particular implementation or project.      

The decision maker provides three pieces of information. First, for each enabler, disabler, or additional factor, the utility 

value is computed by taking the corresponding weight, impact, and probability information from the decision maker(s). 

Second, the weight value refers to the relevance or importance as assessed by the decision maker, the impact value 
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shows the decision maker’s perception of the magnitude of impact of the enabler, disabler, or additional factor. The last 

piece of information is the probability, which refers to the likelihood of occurrence of the enabler, disabler, or additional 

factor.  

The interface of the decision tree algorithm receives the inputs from the decision makers by associating linguistic 

counterparts with the numeric values of the assessments of weight, impact, and probability. This facilitates decision 

makers’ scoring, making it easier to translate their perceptions into numeric values. 
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